56 research outputs found

    High-Resolution Description of Antibody Heavy-Chain Repertoires in Humans

    Get PDF
    Antibodies' protective, pathological, and therapeutic properties result from their considerable diversity. This diversity is almost limitless in potential, but actual diversity is still poorly understood. Here we use deep sequencing to characterize the diversity of the heavy-chain CDR3 region, the most important contributor to antibody binding specificity, and the constituent V, D, and J segments that comprise it. We find that, during the stepwise D-J and then V-DJ recombination events, the choice of D and J segments exert some bias on each other; however, we find the choice of the V segment is essentially independent of both. V, D, and J segments are utilized with different frequencies, resulting in a highly skewed representation of VDJ combinations in the repertoire. Nevertheless, the pattern of segment usage was almost identical between two different individuals. The pattern of V, D, and J segment usage and recombination was insufficient to explain overlap that was observed between the two individuals' CDR3 repertoires. Finally, we find that while there are a near-infinite number of heavy-chain CDR3s in principle, there are about 3–9 million in the blood of an adult human being

    Smooth Muscle miRNAs Are Critical for Post-Natal Regulation of Blood Pressure and Vascular Function

    Get PDF
    Phenotypic modulation of smooth muscle cells (SMCs) plays a key role in vascular disease, including atherosclerosis. Several transcription factors have been suggested to regulate phenotypic modulation of SMCs but the decisive mechanisms remain unknown. Recent reports suggest that specific microRNAs (miRNAs) are involved in SMC differentiation and vascular disease but the global role of miRNAs in postnatal vascular SMC has not been elucidated. Thus, the objective of this study was to identify the role of Dicer-dependent miRNAs for blood pressure regulation and vascular SMC contractile function and differentiation in vivo. Tamoxifen-inducible and SMC specific deletion of Dicer was achieved by Cre-Lox recombination. Deletion of Dicer resulted in a global loss of miRNAs in aortic SMC. Furthermore, Dicer-deficient mice exhibited a dramatic reduction in blood pressure due to significant loss of vascular contractile function and SMC contractile differentiation as well as vascular remodeling. Several of these results are consistent with our previous observations in SM-Dicer deficient embryos. Therefore, miRNAs are essential for maintaining blood pressure and contractile function in resistance vessels. Although the phenotype of miR-143/145 deficient mice resembles the loss of Dicer, the phenotypes of SM-Dicer KO mice were far more severe suggesting that additional miRNAs are involved in maintaining postnatal SMC differentiation

    MiR-17-92 cluster is associated with 13q gain and c-myc expression during colorectal adenoma to adenocarcinoma progression

    Get PDF
    Background:MicroRNAs are small non-coding RNA molecules, which regulate central mechanisms of tumorigenesis. In colorectal tumours, the combination of gain of 8q and 13q is one of the major factors associated with colorectal adenoma to adenocarcinoma progression. Functional studies on the miR-17-92 cluster localised on 13q31 have shown that its transcription is activated by c-myc, located on 8q, and that it has oncogenic activities. We investigated the contribution of the miR-17-92 cluster during colorectal adenoma to adenocarcinoma progression.Methods:Expression levels of the miR-17-92 cluster were determined in 55 colorectal tumours and in 10 controls by real-time RT-PCR. Messenger RNA c-myc expression was also determined by real-time RT-PCR in 48 tumours with array comparative genomic hybridisation (aCGH) data available.Results:From the six members of the miR-17-92 cluster, all except miR-18a, showed significant increased expression in colorectal tumours with miR-17-92 locus gain compared with tumours without miR-17-92 locus gain. Unsupervised cluster analysis clustered the tumours based on the presence of miR-17-92 locus gain. Significant correlation between the expression of c-myc and the six miRNAs was also found.Conclusion:Increased expression of miR-17-92 cluster during colorectal adenoma to adenocarcinoma progression is associated to DNA copy number gain of miR17-92 locus on 13q31 and c-myc expression. Β© 2009 Cancer Research UK

    MicroRNAs Dynamically Remodel Gastrointestinal Smooth Muscle Cells

    Get PDF
    Smooth muscle cells (SMCs) express a unique set of microRNAs (miRNAs) which regulate and maintain the differentiation state of SMCs. The goal of this study was to investigate the role of miRNAs during the development of gastrointestinal (GI) SMCs in a transgenic animal model. We generated SMC-specific Dicer null animals that express the reporter, green fluorescence protein, in a SMC-specific manner. SMC-specific knockout of Dicer prevented SMC miRNA biogenesis, causing dramatic changes in phenotype, function, and global gene expression in SMCs: the mutant mice developed severe dilation of the intestinal tract associated with the thinning and destruction of the smooth muscle (SM) layers; contractile motility in the mutant intestine was dramatically decreased; and SM contractile genes and transcriptional regulators were extensively down-regulated in the mutant SMCs. Profiling and bioinformatic analyses showed that SMC phenotype is regulated by a complex network of positive and negative feedback by SMC miRNAs, serum response factor (SRF), and other transcriptional factors. Taken together, our data suggest that SMC miRNAs are required for the development and survival of SMCs in the GI tract

    Nuclear Pore Complex Protein Mediated Nuclear Localization of Dicer Protein in Human Cells

    Get PDF
    Human DICER1 protein cleaves double-stranded RNA into small sizes, a crucial step in production of single-stranded RNAs which are mediating factors of cytoplasmic RNA interference. Here, we clearly demonstrate that human DICER1 protein localizes not only to the cytoplasm but also to the nucleoplasm. We also find that human DICER1 protein associates with the NUP153 protein, one component of the nuclear pore complex. This association is detected predominantly in the cytoplasm but is also clearly distinguishable at the nuclear periphery. Additional characterization of the NUP153-DICER1 association suggests NUP153 plays a crucial role in the nuclear localization of the DICER1 protein

    Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells

    Get PDF
    The immune synapse is an exquisitely evolved means of communication between T cells and antigen-presenting cells (APCs) during antigen recognition. Recent evidence points to the transfer of RNA via exosomes as a novel mode of intercellular communication. Here we show that exosomes of T, B and dendritic immune cells contain microRNA (miRNA) repertoires that differ from those of their parent cells. We investigate whether miRNAs are exchanged during cognate immune interactions, and demonstrate the existence of antigen-driven unidirectional transfer of miRNAs from the T cell to the APC, mediated by the delivery of CD63+ exosomes on immune synapse formation. Inhibition of exosome production by targeting neutral sphingomyelinase-2 impairs transfer of miRNAs to APCs. Moreover, miRNAs transferred during immune synapsis are able to modulate gene expression in recipient cells. Thus, our results support a mechanism of cellular communication involving antigen-dependent, unidirectional intercellular transfer of miRNAs by exosomes during immune synapsis

    The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease.

    Get PDF
    The miR-17/92 cluster is among the best-studied microRNA clusters. Interest in the cluster and its members has been increasing steadily and the number of publications has grown exponentially since its discovery with more than 1000 articles published in 2012 alone. Originally found to be involved in tumorigenesis, research work in recent years has uncovered unexpected roles for its members in a wide variety of settings that include normal development, immune diseases, cardiovascular diseases, neurodegenerative diseases and aging. In light of its ever-increasing importance and ever-widening regulatory roles, we review here the latest body of knowledge on the cluster\u27s involvement in health and disease as well as provide a novel perspective on the full spectrum of protein-coding and non-coding transcripts that are likely regulated by its members

    Complement C4 inhibits systemic autoimmunity through a mechanism independent of complement receptors CR1 and CR2.

    No full text
    The complement system enhances antibody responses to T-dependent antigens, but paradoxically, deficiencies in C1 and C4 are strongly linked to autoantibody production in humans. In mice, disruption of the C1qa gene also results in spontaneous autoimmunity. Moreover, deficiencies in C4 or complement receptors 1 and 2 (CR1/CR2) lead to reduced selection against autoreactive B cells and impaired humoral responses. These observations suggest that C1 and C4 act through CR1/CR2 to enhance humoral immunity and somehow suppress autoimmunity. Here we report high titers of spontaneous antinuclear antibody (ANA) in C4(-/)- mice. This systemic lupus erythematosus-like autoimmunity is highly penetrant; by 10 mo of age, all C4(-)(/)- females and most males produced ANA. In contrast, titers and frequencies of ANA in Cr2(-)(/)- mice, which are deficient in CR1 and CR2, never rose significantly above those in normal controls. Glomerular deposition of immune complexes (ICs), glomerulonephritis, and splenomegaly were observed in C4(-)(/)- but not Cr2(-)(/)- mice. C4(-)(/)-, but not Cr2(-)(/)-, mice accumulate activated T and B cells. Clearance of circulating ICs is impaired in preautoimmune C4(-)(/)-, but not Cr2(-)(/)-, mice. C4 deficiency causes spontaneous, lupus-like autoimmunity through a mechanism that is independent of CR1/CR2
    • …
    corecore